Meyer–Schuster Rearrangement of γ -Sulfur-Substituted Propargyl Alcohols: A Convenient Synthesis of $\alpha_{,\beta}$ -Unsaturated Thioesters

Mitsuhiro Yoshimatsu,*,* Motoyo Naito, Masataka Kawahigashi, Hiroshi Shimizu, and Tadashi Kataoka*

Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5-chome, Gifu 502, Japan

Received January 3, 1995[⊗]

 γ -Sulfur-substituted propargyl alcohols **1a**-**e** and **1ij** reacted with polyphosphoric acid trimethylsilyl ester (PPSE) to give the α,β -unsaturated thioesters $3\mathbf{a}-\mathbf{e}$ and $3\mathbf{i},\mathbf{j}$ in good yields. However, the reactions of 3,3-dibutyl-1-(phenylthio)propargyl alcohol (1k) and 1-(phenylthio)ethynyl-1-cycloalkanols 11-n with PPSE gave the enyne sulfides 2k-n exclusively.

Some unsaturated thioesters have interesting insecticidal activities.¹ Thioesters have attracted much attention as active esters for syntheses of macrocyclic lactones,² and consequently, α,β -unsaturated thioesters have been used for the synthesis of macrocyclic $\alpha_{,\beta}$ unsaturated lactones.³ However, there are only a few reports on the preparation of α,β -unsaturated thioesters: reactions of α -carbanions of ethanethioate with carbonyl compounds such as Wittig reaction,⁴ Wittig-Horner reaction,⁵ and Peterson reaction.⁶ S-Alkyl or S-phenyl 2-(dialkoxyphosphoryl)alkanethioates are unstable and their Wittig-Horner reactions did not give satisfactory results⁵ excepting, however, the reactions of S-propyl 2-(diethoxyphosphoryl)propanethioate with aldehydes which gave α,β -unsaturated thioesters in moderate yields. The same difficulty arises in the synthesis of α,β -unsaturated thioesters by base-induced condensation, because the bases nucleophilically attack at the carbonyl group of α,β -unsaturated thioesters and cause thioester destruction. If the synthesis of α,β -unsaturated thioesters can be achieved under neutral conditions, development of a new chemistry of the thioesters becomes feasible.

Recently, we reported a novel synthesis of (Z)-enynes and (Z)-enediynes by dehydration of propargyl alcohols with polyphosphoric acid trimethylsilyl ester (PPSE).7 In contrast, treatment of γ -chalcogen-substituted propargyl alcohols with PPSE gave α,β -unsaturated thioesters via the Meyer-Schuster type rearrangement⁸ instead of γ -chalcogen-substituted envnes. This paper describes a simple and novel synthesis of α,β -unsaturated thioesters from γ -sulfur-substituted propargyl alcohols.

A propargyl alcohol 1a was treated with PPSE to give (E)-S-phenyl 2-pentenethioate (3a) (54%) accompanied with (Z)-enyne sulfide **2a** (6%). The structure of the thioester 3a was determined by the analytical and

spectral data. IR spectrum showed an absorption of the thioester at v 1680 cm⁻¹. ¹H NMR spectrum exhibited a signal due to 2-H at δ 6.17 (dt, J = 15 and 2 Hz). The enyne sulfide 2a showed the molecular formula $C_{11}H_{10}S$ by the high-resolution mass spectra. ¹H NMR spectrum showed a Z-olefinic proton at δ 5.70 (dq, J = 10 and 2 Hz). Various S-phenyl unsaturated thioesters 3b-e were obtained in good yields (entries 2-5). When the propargyl acetate 1f was treated with PPSE (entry 6), the unsaturated thioester 3b decreased and the enyne sulfide 2b slightly increased in comparison with the treatment of the corresponding alcohol 1b (entry 2). Other propargyl esters 1g and 1h similarly gave the thioester 3b as the main product. S-tert-Butyl 1i and S-mesityl derivative 1j provided the corresponding thioesters 3i and **3j**, respectively, in good yields.

In sharp contrast, the reactions of a tertiary propargyl alcohol 1k and [(phenylthio)ethynyl]cycloalkanols 1l-n with PPSE afforded the envne sulfides $2\mathbf{k}-\mathbf{n}$ in high yields, accompanied with trace amounts of α,β -unsaturated thioesters 31-n. Propargyl alcohol 10 gave a dienevne sulfide 20 and an enyne ether 40. When the alcohol 10 was slowly added to a PPSE solution, the dieneyne sulfide **2o** ((3E,5E):(3E,5Z) = 1.8:1) was obtained exclusively. The isomer ratio was determined by the intensity of 3-H in ¹H NMR spectrum. The structural assignment of the dieneyne sulfide 20 was performed by IR, ¹H, and ¹³C NMR, and mass spectral data. Its MS showed a molecular ion peak at m/z 216 (C₁₄H₁₆S). IR spectrum showed the presence of acetylene at ν 2150 cm⁻¹. The ¹H NMR spectrum exhibited two pairs of doublet at δ 5.69 (J = 16 Hz, (3E, 5E)-3-H) and 5.77 (J =

^{*} Present address: Dr. Mitsuhiro Yoshimatsu, Department of Chemistry, Faculty of Education, Gifu University, Yanagido, Gifu 501-Japan.

[®] Abstract published in Advance ACS Abstracts, July 1, 1995.

⁽¹⁾ Karrer, F.; Farooq, S. German Patent 2452721, 1975, Ciba-Geigy Corp.; Chem. Abstr. 1975, 83, 147310.

⁽²⁾ Nicolaou, K. C. Tetrahedron, 1977, 33, 683. Masamune, S. Aldrichim. Acta 1978, 11, 23.

⁽³⁾ Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates, G. S. J. Am. Chem. Soc. 1977, 99, 6756. (4) Keck, G. E.; Boden, E. P.; Mabury, S. A. J. Org. Chem. 1985,

^{50, 709.} (5) Coutrot, Ph.; Charbonnier, C.; Grison, C. Synthesis 1991, 23.

⁽⁶⁾ Lucast, D. H.; Wemple, J. Tetrahedron Lett. 1977, 1103.

⁽⁷⁾ Yoshimatsu, M.; Yamada, H.; Shimizu, H.; Kataoka, T. J. Chem.

⁽a) Thommar, 1994, 2107.
(b) Theron, F.; Verny, M.; Vessiere, R. In The Chemistry of the Carbon-Carbon Triple Bond; Patai, S., Ed.; John-Wiley & Sons: Chichester, 1978; Part 1, Chapter 10.

Table 1. Reaction of Propargyl Alcohols and Polyphosphoric Acid Trimethylsilyl Ester (PPSE)

Entry	Propargyl alcohol	Conditions	Products (% yields)
1		83 °C, 30 min	PhS
2		83 °C, 30 min	PhS
3	PhSOH 1cMe	83 °C, 30 min	PhS
4	PhS Me 1d Me	83 °C, 30 min	PhS
5		83 °C, 30 min	
6	PhSOCOMe	83 °C, 2h	26 (13) 25 (24) 36 (65)
7	PhSOCO-rBu	83 °C, 2h	2b (13) 3b (53)
8	PhS OCOPh 1h Ph	83 °C, 2h	2b (18) 3b (55)
9	HBUS	83 °C, 2h	18us-4 Ph 3i (65)
10		63 °C,2n ^{Me} —	
11	OH PhS = h-n-Bu 1k n-Bu	83 °C, 30 min	Phs
12	PhS	rt, 30 min	PhS PhS 3i (4)
13		rt, 30 min	PhS PhS 3m (13)
14		rt, 3 0 min	PhS
15		0 °C, 10 min	PhS 0 (31) Et (PhS 0 40 (51) 40 (51)
16	10	0 °C, 10 min*1	2o (70) ^{*1}
17		0 °C, 10 min	complex mixture
18		0 °C, 10 min	complex mixture
19		0 °C, 10 min	complex mixture

*1) A CICH₂CH₂Cl solution of propargy alcohol 10 was added dropwise to the PPSE solution at 0 °C.

16 Hz, (3E,5Z)-3-H) due to 3-H, and two pairs of double of doublet at δ 6.65 (J = 11 and 16 Hz, (3E,5E)-4-H) and 6.96 (J = 12 and 16 Hz, (3E,5Z)-4-H) due to 4-H. The signals at δ 5.90 (d, J = 15 Hz) and at δ 6.13 (dd, J = 11and 15 Hz) were assigned as 6-H and 5-H, respectively, by irradiation of 7-CH₂ in the ¹H-decoupling experiment of (3E,5E)-20. These data suggested that the major isomer of **20** has the (3E,5E)-configuration.

The mechanism for formation of the products 2 and 3 are shown in Scheme 3. The propargyl alcohol 5 attacks at the phosphorus atom of PPSE to give the pentavalent phosphorane intermediate 6. The intermediate 6 ($\mathbb{R}^1 =$ H), formed from a secondary alcohol, undergoes a Meyer-Schuster rearrangement *via* the intermediate 6B (path a) rather than the dehydration. The resulting phosphate 7 is hydrolyzed to give an allenol intermediate 8. The allenol 8 easily isomerizes to α,β -unsaturated thioester 9. On the contrary, the propargyl carbon-oxygen bond of the intermediate 6 ($R^1 \neq H$), formed from a tertiary alcohol, is cleaved more readily than that of the intermediate $6 (R^1 = H)$, formed from a secondary alcohol, and consequently, the intermediate $\mathbf{6} (\mathbf{R}^1 \neq \mathbf{H})$ causes dehydration via the intermediate 6A (path b). The dehydration of the intermediate 6 would proceed via a sixmembered transition state (10), in which an alkyl and an alkynyl group lie in the side opposite to the bulky phosphorus moieties, and the intermediate 10 affords the envne sulfide 12 Z-selectively. When steric hindrance between the acetylenic moiety and R² becomes larger, the intermediate 10 transforms into the other intermediate 11 and forms the more stable E-isomer 13. The cycloalkanols 11-n also form the hypervalent intermediates 14 and 15 as shown in Scheme 4. These intermediates would take six-membered chair conformations by the hydrogen-bonding. The cis-intermediate 15 should be unfavorable because of the destabilization by the steric

hindrance between the bulky phosphorus moiety and the 1,3-diaxial hydrogens. The intermediate 14 possesses an axial alkynyl group, and the attack of a nucleophile at the alkynyl carbon is hindered by the bulky ligands of PPSE and the 1,3-diaxial hydrogens. Therefore, 14 preferentially undergoes dehydration and provides the enyne.

Experimental Section⁹

Preparation of Propargyl Alcohols 1a-e, i-k. General Procedure. A solution of (phenylthio)acetylene (0.67 g, 5.0 mmol) in ether (10 mL) was added to an ether (20 mL) solution of EtMgBr (7.5 mmol). The ether solution was refluxed for 30 min and then cooled at 0 °C. An ether (10 mL) solution of an aldehyde or a ketone (7.5 mmol) was added dropwise to the reaction mixture. The whole was stirred for 10 min at 0 °C and then poured into water. The organic layer was separated and the aqueous layer was extracted with ether. The organic layer and the extracts were combined, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with hexane-AcOEt (10:1) to give a propargyl alcohol as a pale yellow oil.

1-(Phenylthio)pent-1-yn-3-ol (1a): yield 81%; IR (film, cm⁻¹) 3600-3100 (OH), 2190 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 1.05 (3H, t, J = 7 Hz), 1.79-1.83 (2H, m), 2.23 (1H, brs), 4.52-4.54 (1H, m), 7.19-7.23 (1H, m), 7.30-7.34 (2H, m), 7.40-7.42 (2H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 9.50 (q), 30.79 (t), 64.58 (d), 71.64 (s), 99.71 (s), 126.20 (d), 126.54 (d), 129.19 (d), 132.43 (s); high-resolution mass calcd for C₁₁H₁₂-OS m/z 192.0609, found m/z 192.0623.

5-Phenyl-1-(phenylthio)pent-1-yn-3-ol (1b): yield quant; IR (film, cm⁻¹) 3600-3200 (OH), 2190 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 2.00 (1H, d, J = 5 Hz), 2.08-2.16 (2H, m), 2.84 (2H, t, J = 8 Hz), 4.56–4.60 (1H, m), 7.18–7.43 (5H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 31.45 (t), 39.14 (t), 62.64 (d), 72.30 (s), 99.51 (s), 126.07 (d), 126.30 (d), 126.67 (d), 128.46 (d), 129.25 (d), 132.32 (s), 141.00 (s). Anal. Calcd for C₁₇H₁₆-OS: C, 76.08; H, 6.01. Found: C, 76.13; H, 6.23.

4-Methyl-1-(phenylthio)pent-1-yn-3-ol (1c): yield 54%; IR (film, cm⁻¹) 3600-3200 (OH), 2180 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.04 (3H, d, J = 7 Hz), 1.06 (3H, d, J = 6 Hz), 1.95-2.00 (1H, m), 2.06 (1H, brs), 4.40 (1H, brs), 7.22-7.24 (1H, m), 7.31-7.35 (2H, m), 7.42 (2H, brd, J = 8 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 17.64 (q), 18.17 (q), 34.63 (d), 68.84 (d), 72.23 (s), 98.73 (s), 126.27 (d), 126.56 (d), 129.19 (d), 132.56 (s); high-resolution mass calcd for C₁₀H₁₄OS m/z 206.0766, found m/z 206.0757.

4,4-Dimethyl-1-(phenylthio)pent-1-yn-3-ol (1d): yield 89%; IR (film, cm⁻¹) 3600-3200 (OH), 2190 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.04 (9H, s), 2.18 (1H, brs), 4.23 (1H, d, J = 5 Hz), 7.18-7.22 (1H, m), 7.30-7.33 (2H, m), 7.41 (2H, brd, J = 8 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 14.09 (q × 3), 36.15 (s), 72.25 (d), 86.86 (s), 98.69 (s), 126.21 (d), 126.49 (d), 129.14 (d), 132.58 (s); high-resolution mass calcd for C₁₃H₁₆-OS m/z 220.0922, found m/z 220.0937.

1-(Phenylthio)oct-1-yn-3-ol (1e): yield 97%: IR (film, cm⁻¹) 3600-3100 (OH), 2170 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 0.86 (3H, t, J = 6 Hz), 1.23-1.31 (6H, m), 1.45-1.51 (2H, m), 1.75-1.82 (2H, m), 2.23 (1H, brs), 4.58 (1H, brs), 7.19-7.23 (1H, m), 7.30-7.34 (2H, m), 7.41 (2H, brd, J = 7 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 14.00 (q), 22.52 (t), 25.15 (t), 28.87 (t), 31.66 (t), 37.70 (t), 63.38 (d), 71.53 (s), 100.06 (s), 126.20 (d), 126.52 (d), 129.18 (d), 132.50 (s). Anal. Calcd for C₁₅H₂₀OS: C, 72.54; H, 8.12. Found: C, 72.33; H, 8.33.

1-tert-(Butylthio)-5-phenylpent-1-yn-3-ol (1i): yield 52%; IR (film, cm⁻¹) 3600–3200 (OH), 2170 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.42 (9H, s), 2.02–2.09 (2H, m), 2.79 (2H, t, J = 8 Hz), 4.51 (1H, t, J = 7 Hz), 7.19–7.30 (5H, m). Anal. Calcd for C₁₅H₂₀OS: C, 72.54; H, 8.12. Found: C, 72.48; H, 8.10.

1-(Mesitylthio)-5-phenylpent-1-yn-3-ol (1j): yield 98%; colorless needles, mp 56-57 °C; IR (KBr, cm⁻¹) 3600-3200 (OH), 2190 (acetylene); ¹H NMR (400 MHz) (CDCl₃) δ 1.82 (1H, brs), 1.92-2.02 (2H, m), 2.26 (3H, s), 2.53 (3H, s), 2.54 (3H, s), 2.72 (2H, t, J = 8 Hz), 6.93 (2H, brs), 7.13-7.25 (5H, m). Anal. Calcd for C₂₀H₂₂OS: C, 77.38; H, 7.14. Found: C, 77.26; H, 7.13.

3-*n***-Butyl-1-(phenylthio)hept-1-yn-3-ol (1k):** yield 73%; IR (film, cm⁻¹) 3600-3200 (OH), 2160 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 0.93 (6H, t, J = 7 Hz), 1.26-1.44 (8H, m), 1.47-1.61 (4H, m), 1.69-1.81 (4H, m), 2.38 (1H, brs), 7.18-7.43 (5H, m). ¹³C NMR (67.5 MHz)(CDCl₃) δ 14.03 (q), 22.88

⁽⁹⁾ For general experimental procedures, see: Yoshimatsu, M.; Sato, T.; Shimizu, H.; Hori, M.; Kataoka, T. J. Org. Chem. **1994**, 59, 1011.

(t), 26.56 (t), 41.77 (t), 42.89 (s), 72.33 (s), 102.15 (s), 126.12 (d), 126.45 (d), 129.34 (d), 132.92 (s); high-resolution mass calcd for $C_{17}H_{24}OS\ m/z\ 276.1548,\ m/z\ 276.1573.$

1-[(Phenylthio)ethynyl]-1-cyclohexanol (11): yield quant; IR (film, cm⁻¹) 3600-3200 (OH), 2200 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.54-1.70 (8H, m), 1.96-1.98 (2H, m), 2.48 (1H, brs), 7.18-7.21 (1H, m), 7.30-7.33 (2H, m), 7.40 (2H, brd, J = 8 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 23.26 (t), 25.13 (t), 39.83 (t), 69.70 (s), 70.52 (s), 102.63 (s), 125.95 (d), 126.43 (d), 129.21 (d), 132.83 (s). Anal. Calcd for C₁₄H₁₇OS: C, 72.37; H, 6.94. Found: C, 72.09; H, 7.06.

1-[(Phenylthio)ethynyl]-1-cyclopentanol (1m): yield quant; IR (film, cm⁻¹) 3600–3200 (OH), 2180 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.75–1.89 (4H, m), 1.99–2.10 (4H, m), 2.14 (1H, brs), 7.19–7.22 (1H, m), 7.30–7.40 (2H, m), 7.41 (2H, brd, J = 3 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 23.56 (t), 42.57 (t), 69.66 (s), 75.38 (s), 102.58 (s), 125.99 (d), 126.44 (d), 129.21 (d), 132.79 (s); high-resolution mass calcd for C₁₃H₁₄-OS m/z 218.0765, found m/z 218.0760.

1-[(Phenylthio)ethynyl]-1-cycloheptanol (1n): yield 76%; IR (film, cm⁻¹) 3600-3200 (OH), 2190 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.58-1.64 (6H, m), 1.89-1.92 (2H, m), 2.08-2.13 (2H, m), 2.46-2.48 (2H, m), 2.72 (1H, brs), 7.17-7.21 (1H, m), 7.29-7.33 (2H, m), 7.39 (2H, brd, J = 7 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 22.08 (t), 24.15 (t), 27.92 (t), 30.24 (t), 42.84 (t), 43.70 (t), 69.37 (s), 72.52 (s), 103.74 (s), 125.76 (d), 126.21 (d), 129.03 (d), 132.80 (s); high-resolution mass calcd for C₁₅H₁₈OS m/z 246.1078, found m/z 246.1069.

1-(Phenylthio)oct-4-en-1-yn-3-ol (10): yield 57%; IR (film, cm⁻¹) 3600-3200 (OH), 2120 (acetylene); ¹H NMR (400 MHz) (CDCl₃) δ 0.91 (3H, t, J = 7 Hz), 1.38-1.47 (2H, m), 1.99-2.08 (2H, m), 2.42 (1H, brs), 5.05 (1H, brs), 5.65 (1H, dd, J = 6 and 15 Hz), 5.87-5.93 (1H, m), 7.19-7.23 (1H, m), 7.30-7.34 (2H, m), 7.41 (2H, brd, J = 8 Hz); ¹³C NMR (100 MHz)-(CDCl₃) δ 13.60 (q), 21.97 (t), 33.95 (t), 63.72 (d), 72.56 (s), 98.27 (s), 126.27 (d), 126.56 (d), 128.59 (d), 129.16 (d), 132.56 (s), 134.06 (d). Anal. Calcd for C₁₄H₁₆OS: C, 72.37; H, 6.94. Found: C, 72.03; H, 6.88.

5-Phenyl-1-(phenylthio)pent-4-en-1-yn-3-ol (1p): yield 57%; mp 65-68 °C; IR (KBr, cm⁻¹) 3600-3200 (OH), 2180 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 2.19 (1H, brs), 5.29 (1H, brs), 6.34 (1H, dd, J = 6 and 16 Hz), 6.81 (1H, brd, J =16 Hz), 7.21-7.46 (10H, m). Anal. Calcd for C₁₇H₁₄OS: C, 76.66; H, 5.30. Found: C, 76.66; H, 5.29.

1-[(Phenylthio)ethynyl]cyclohex-2-en-1-ol (1q): yield 61%; IR (film, cm⁻¹) 3600-3200 (OH), 2170 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.79-1.83 (2H, m), 1.95-2.15 (4H, m), 2.27 (1H, brs), 5.79-5.89 (2H, m), 7.19-7.43 (5H, m). Anal. Calcd for C₁₄H₁₄OS: C, 73.01; H, 6.13. Found: C, 73.01; H, 5.91.

1-(Phenylthio)non-1,4-diyn-3-ol (1r): yield 42%; IR (film, cm⁻¹) 3600–3200 (OH), 2230, 2180 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 0.91 (3H, t, J = 7 Hz), 1.36–1.55 (4H, m), 2.24 (2H, dt, J = 2 and 7 Hz), 5.32 (1H, brs), 7.19–7.21 (1H, m), 7.23–7.33 (2H, m), 7.43 (2H, dd, J = 1 and 8 Hz); high-resolution mass calcd for C₁₅H₁₆OS m/z 244.0938, found m/z 244.0930.

Preparation of Propargyl Esters 1f-h. General Procedure. The compounds **1f-h** were prepared from **1b** and the corresponding acid anhydride or acyl chlorides. 4-(Dimethylamino)pyridine (0.03 g, 0.24 mmol) was added to a mixture of propargyl alcohol **1b** (3.0 mmol) and acid anhydride or acid chloride (4.5 mmol) at room temperature. The solution was stirred for 1 h and poured into water. The organic layer was separated, and the aqueous layer was extracted with ether. The organic layer and the extracts were combined, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with hexane-AcOEt (20:1).

3-Acetyl-5-phenyl-1-(phenylthio)pent-1-yne (1f): yield 99%; IR (film, cm⁻¹) 2180 (acetylene), 1740 (CO), 1230 (OCO); ¹H NMR (270 MHz)(CDCl₃) δ 2.08 (3H, s), 2.13–2.22 (2H, m), 2.82 (2H, t, J = 8 Hz), 5.55 (1H, t, J = 7 Hz), 7.15–7.44 (10H, m). Anal. Calcd for C₁₉H₁₈O₂S: C, 73.52; H, 5.84. Found: C, 73.64; H, 5.95.

3-(Pivaloyloxy)-5-phenyl-1-(phenylthio)pent-1-yne (1g): yield 72%; IR (film, cm⁻¹) 2180 (acetylene), 1720 (CO), 1150 (OCO); ¹H NMR (400 MHz)(CDCl₃) δ 1.24 (9H, s), 2.16–2.20 (2H, m), 2.81 (2H, t, J = 8 Hz), 5.54 (1H, brs), 7.18–7.42 (10H, m). Anal. Calcd for C₂₂H₂₄O₂S: C, 74.96; H, 6.86. Found: C, 75.04; H, 6.89.

3-(Benzoyloxy)-5-phenyl-1-(phenylthio)pent-1-yne (1h): yield 77%, IR (film, cm⁻¹) 2180 (acetylene), 1720 (CO), 1260 (OCO); ¹H NMR (400 MHz)(CDCl₃) δ 2.27–2.35 (2H, m), 2.89 (2H, t, J = 8 Hz), 5.80 (1H, t, J = 7 Hz), 7.15–7.53 (13H, m), 8.03 (2H, d, J = 8 Hz). Anal. Calcd for C₂₄H₂₀O₂S: C, 77.39; H, 5.41. Found: C, 77.38; H, 5.52.

Reactions of Propargyl Alcohols 1a-e, 1i-r and α -Acyloxy Propargyl Esters 1f-h with PPSE. General Procedure. A solution of propargyl alcohol 1 (1.0 mmol) in ClCH₂CH₂Cl (1 mL) was added to a ClCH₂CH₂Cl (5 mL) solution of PPSE¹⁰ (prepared from hexamethyldisiloxane (1.5 mL) and P₂O₅ (0.5 g)) under an Ar atmosphere. The reaction mixture was refluxed for 30 min, cooled to 0 °C, and then poured into a saturated NaHCO₃ solution (150 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. The organic layer and the extracts were combined, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by preparative TLC on silica gel eluting with hexane. The enyne sulfides 2 and thioesters 3 were obtained as pale yellow oils. The results are shown in Table 1.

(Z)-1-(Phenylthio)pent-3-en-1-yne (2a): a pale yellow oil, IR (film, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.94 (3H, dt, J = 5 and 2 Hz), 5.70 (1H, dq, J = 10 and 2 Hz), 6.05 (1H, brs), 7.21–7.27 (1H, m), 7.32–7.35 (2H, m), 7.44–7.46 (2H, m); ¹³C NMR (100 MHz) (CDCl₃) δ 16.23 (q), 79.16 (s), 95.03 (s), 109.90 (d), 126.01 (d), 126.38 (d), 129.16 (d), 133.31 (s), 139.22 (d); high-resolution mass calcd for $C_{11}H_{10}S m/z$ 174.0504, found m/z 174.0501.

(E)-S-Phenyl pent-2-enethioate (3a): a yellow oil, IR (film, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 1.09 (3H, t, J = 7 Hz), 2.22–2.28 (2H, m), 6.17 (1H, dt, J = 15 and 2 Hz), 7.03 (1H, dt, J = 15 and 6 Hz), 7.24–7.44 (5H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 11.97 (q), 25.32 (t), 126.91 (d), 127.66 (s), 129.03 (d), 129.22 (d), 134.57 (d), 148.03 (d), 187.97 (s). Anal. Calcd for C₁₁H₁₂OS: C, 68.71; H, 6.29. Found: C, 68.51; H, 6.31.

(Z)-1-(Phenylthio)-5-phenylpent-3-en-1-yne (2b): a pale yellow oil, IR (film, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 3.70 (2H, d, J = 7 Hz), 5.79 (1H, dt, J = 10 and 2 Hz), 6.12 (1H, dt, J = 10 and 7 Hz), 7.17–7.45 (10H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 36.77 (t), 79.47 (s), 95.01 (s), 109.75 (d), 126.16 (d), 126.30 (d), 126.51 (d), 128.48 (d), 128.57 (d), 129.21 (d), 133.02 (s), 133.05 (s), 139.34 (s), 142.14 (d); high-resolution mass calcd for C₁₇H₁₄S m/z 250.0816, found m/z 250.0810.

(E)-S-Phenyl 5-phenylpent-2-enethioate (3b): a yellow oil, IR (film, cm⁻¹) 1690 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 2.51–2.57 (2H, m), 2.79 (2H, t, J = 7 Hz), 6.19 (1H, dt, J = 16 and 2 Hz), 7.01 (1H, dt, J = 16 and 7 Hz), 7.17–7.23 (2H, m), 7.28–7.32 (2H, m), 7.39–7.45 (6H, m); ¹³C NMR (100 MHz)-(CDCl₃) δ 34.00 (t), 34.25 (t), 126.26 (d), 127.60 (s), 128.27 (d), 128.33 (d), 128.53 (d), 129.13 (d), 129.33 (d), 134.62 (d), 140.53 (s), 145.46 (d), 187.93 (s). Anal. Calcd for C₁₇H₁₆OS: C, 76.08; H, 6.01. Found: C, 75.92; H, 5.97.

(Z)-4-Methyl-1-(phenylthio)pent-3-en-1-yne (2c): a pale yellow oil, IR (film, cm⁻¹) 2140 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 1.55 (3H, s), 1.86 (3H, s), 5.48 (1H, brs), 7.18–7.21 (1H, m), 7.25–7.34 (2H, m), 7.43 (2H, dd, J = 7 and 1 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 21.31 (q), 24.86 (q), 75.99 (s), 96.31 (s), 105.27 (d), 125.85 (d), 126.18 (d), 129.10 (d), 133.84 (s), 150.81 (s). Anal. Calcd for C₁₂H₁₂S: C, 76.55; H, 6.42. Found: C, 76.57; H, 6.63.

(E)-S-Phenyl 4-methylpent-2-enethioate (3c): a yellow oil, IR (film, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 1.09 (6H, dd, J = 4 and 2 Hz), 2.44–2.50 (1H, m), 6.13 (1H, dd, J = 14 and 1 Hz), 6.95 (1H, dd, J = 14 and 7 Hz), 7.23–7.45 (5H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 21.08 (q), 31.02 (d), 125.17 (d), 127.69 (s), 129.05 (d), 129.23 (d), 134.59 (d),

⁽¹⁰⁾ Hori, M; Kataoka, T.; Shimizu, H.; Tsutsumi, K.; Yoshimatsu, M. J. Org. Chem. **1990**, 55, 2458.

152.68 (d), 188.21 (s). Anal. Calcd for $C_{12}H_{14}OS:\ C,\ 69.86;\ H,\ 6.84.$ Found: C, 69.84; H, 7.05.

(E)-S-Phenyl 4,4-dimethylpent-2-enethioate (3d): a pale yellow oil, IR (film, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)-(CDCl₃) δ 1.10 (9H, s), 6.08 (1H, d, J = 15 Hz), 6.97 (1H, d, J = 15 Hz), 7.38–7.44 (5H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 28.48 (q), 33.88 (s), 123.27 (d), 127.71 (s), 129.01 (d), 129.18 (d), 134.55 (d), 156.11 (d), 188.34 (s). Anal. Calcd for C₁₃H₁₆-OS: C, 70.87; H, 7.32. Found: C, 70.87; H, 7.31.

(Z)-1-(Phenylthio)non-3-en-1-yne (2e): a pale yellow oil, IR (film, cm⁻¹) 2140 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 0.89 (3H, t, J = 7 Hz), 1.25–1.34 (4H, m), 1.43–1.54 (2H, m), 2.35 (2H, dq, J = 7 and 1 Hz), 5.65 (1H, brd, J = 9 Hz), 5.98 (1H, dq, J = 9 and 7 Hz), 7.19–7.25 (1H, m), 7.31–7.35 (2H, m), 7.43 (2H, dd, J = 7 and 2 Hz); ¹³C NMR (100 MHz)-(CDCl₃) δ 14.00 (q), 22.48 (t), 28.56 (t), 30.57 (t), 31.41 (t), 78.63 (s), 95.36 (s), 108.77 (d), 126.01 (d), 126.34 (d), 129.14 (d), 133.38 (s), 144.87 (d); high-resolution mass calcd for C₁₅H₁₈S m/z 230.1130, m/z 230.1137.

(E)-S-Phenyl non-2-enethioate (3e): a yellow oil, IR (film, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 0.89 (3H, t, J = 6 Hz), 1.29–1.32 (6H, m), 1.44–1.49 (2H, m), 2.21 (2H, dq, J = 7 and 1 Hz), 6.17 (1H, brd, J = 16 Hz), 6.98 (1H, dt, J = 16 and 7 Hz), 7.38–7.45 (5H, m); ¹³C NMR (100 MHz)(CDCl₃) δ 13.98 (q), 22.47 (t), 27.84 (t), 28.78 (t), 31.50 (t), 32.25 (t), 127.73 (d), 129.03 (d), 129.19 (d), 134.57 (d), 146.90 (d), 187.88 (s). Anal. Calcd for C₁₅H₂₀OS: C, 72.54; H, 8.12. Found: C, 72.79; H, 8.28.

S-tert-Butyl 5-phenylpent-2-enethioate (3i): a pale yellow oil, IR (film, cm⁻¹) 1660 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 1.68 (9H, s), 2.62–2.67 (2H, m), 2.93 (2H, t, J = 7 Hz), 6.22 (1H, d, J = 16 Hz), 7.03 (1H, dt, J = 7 and 16 Hz), 7.34–7.40 (3H, m), 7.45–7.48 (2H, m). ¹³C NMR (100 MHz)(CDCl₃) δ 29.84 (q × 3), 33.66 (t), 34.26 (t), 47.76 (s), 126.09 (d), 128.21 (d), 128.39 (d), 129.67 (d), 140.64 (s), 142.69 (d), 190.51. Anal. Calcd for C₁₅H₂₀OS: C, 72.54; H, 8.12. Found: C, 72.43; H, 8.07.

(Z)- and (E)-1-(Mesitylthio)-5-phenylpent-3-en-1-yne (2j): a pale yellow oil, IR (KBr, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 2.27 (s), 2.53 (s), 2.56 (s), 3.40 (d, J = 7Hz), 3.56 (d, J = 7 Hz), 5.54 (d, J = 16 Hz), 5.58 (d, J = 11Hz), 5.96 (dt, J = 7 and 11 Hz), 6.17 (dt, J = 7 and 16 Hz), 6.94 (brs), 7.18–7.27 (m). ¹³C NMR (100 MHz)(CDCl₃) δ 20.98 (Z-q), 21.73 (Z-q × 2), 36.60 (Z-t), 83.16 (Z-s), 87.42 (Z-s), 110.04 (Z-d), 126.12 (Z-d), 128.46 (Z-d), 129.38 (Z-d), 139.22 (Z-s), 141.08 (Z-d), 141.78 (Z-s); high resolution mass calcd for C₂₀H₂₀S m/z 292.1286, found m/z 292.1267.

(*E*)-*S*-Mesityl 5-phenylpent-2-enethioate (3j): colorless needles, mp 60–62 °C; IR (KBr, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 2.28 (3H, s), 2.31 (6H, s), 2.52–2.56 (2H, m), 2.80 (2H, t, J = 7 Hz), 6.21 (1H, d, J = 15 Hz), 6.97 (2H, brs), 7.02 (1H, dt, J = 7 and 15 Hz), 7.17–7.22 (3H, m), 7.27–7.31 (2H, m). ¹³C NMR (100 MHz)(CDCl₃) δ 21.14 (q), 21.60 (q × 2), 34.03 (t), 34.30 (t), 123.46 (s), 126.24 (d), 128.35 (d), 128.47 (d), 128.51 (d), 129.19 (d), 139.85 (s), 140.67 (s), 142.68 (s), 144.86 (d), 187.65 (s). Anal. Calcd for C₂₀H₂₂OS: C, 77.38; H, 7.14. Found: C, 77.39; H, 7.18.

(Z)-3-*n*-Butyl-1-(phenylthio)hept-3-en-1-yne (2k): a pale yellow oil, IR (film, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 0.91 (3H, t, J = 7 Hz), 0.93 (3H, t, J = 7 Hz), 1.24–1.58 (6H, m), 2.18 (2H, brt, J = 7 Hz), 2.28 (2H, brq, J = 7 Hz), 5.72 (1H, t, J = 7 Hz), 7.16–7.22 (1H, m), 7.31–7.34 (2H, m), 7.41–7.45 (2H, m). ¹³C NMR (100 MHz)(CDCl₃) δ 13.77 (q), 13.91 (q), 22.04 (t), 22.52 (t), 30.83 (t), 32.79 (t), 36.70 (t), 77.62 (s), 97.56 (s), 123.17 (s), 125.88 (d), 126.23 (d), 129.12 (d), 133.76 (s), 138.15 (d); high-resolution mass calcd for C₁₇H₂₂S m/z 258.1442, found m/z 258.1462.

1-[(Phenylthio)ethynyl]cyclohexene (2l): a pale yellow oil, IR (film, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 1.58–1.67 (4H, m), 2.12–2.13 (2H, m), 2.20 (2H, brs), 6.21 (1H, brs), 7.16–7.18 (1H, m), 7.20–7.33 (2H, m), 7.40 (2H, dd, J = 8 and 1 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 21.39 (t), 22.23 (t), 25.72 (t), 29.09 (t), 71.84 (s), 100.06 (s), 120.67 (s), 125.79 (d), 126.14 (d), 129.07 (d), 133.57 (s), 136.09 (d); high-resolution mass calcd for C₁₄H₁₄S m/z 214.0817, found m/z 214.0807.

S-Phenyl cyclohexylideneethanethioate (3l): a yellow oil, IR (film, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 1.58–1.69 (6H, m), 2.20 (2H, brt, J = 6 Hz), 2.77–2.78 (2H, m), 5.99 (1H, brs), 7.26–7.44 (5H, m); high-resolution mass calcd for C₁₄H₁₆OS m/z 232.0921, found m/z 232.0932.

1-[(Phenylthio)ethynyl]cyclopentene (2m): a pale yellow oil, IR (film, cm⁻¹) 2130 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 1.88–1.95 (2H, m), 2.42–2.47 (2H, m), 2.49–2.54 (2H, m), 6.12 (1H, t, J = 2 Hz), 7.16–7.21 (1H, m), 7.28–7.32 (2H, m), 7.40 (2H, dd, J = 8 and 2 Hz); ¹³C NMR (100 MHz)-(CDCl₃) δ 23.27 (t), 33.31 (t), 36.31 (t), 75.88 (s), 95.64 (s), 124.27 (s), 125.90 (d), 126.23 (d), 129.10 (d), 133.22 (s), 138.74 (d); high-resolution mass calcd for C₁₃H₁₂S m/z 200.0659, found m/z 200.0650.

S-Phenyl cyclopentylideneethanethioate (3m): a yellow oil, IR (film, cm⁻¹) 1680 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 1.65–1.78 (4H, m), 2.37–2.46 (2H, m), 2.73–2.77 (2H, m), 6.24 (1H, t, J = 2 Hz), 7.38–7.45 (5H, m); ¹³C NMR (100 MHz)-(CDCl₃) δ 25.45 (t), 26.47 (t), 33.95 (t), 36.07 (t), 117.78 (d), 128.54 (s), 129.03 (d), 129.08 (d), 134.64 (d), 168.50 (s), 186.73 (s). Anal. Calcd for C₁₃H₁₄OS: C, 71.52; H, 6.46. Found: C, 71.52; H, 6.61.

1-[(Phenylthio)ethynyl]cycloheptene (2n): a pale yellow oil, IR (film, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)-(CDCl₃) δ 1.51–1.63 (4H, m), 1.73–1.79 (2H, m), 2.20–2.25 (2H, m), 2.39–2.41 (2H, m), 6.39 (1H, t, J = 7 Hz), 7.17–7.21 (1H, m), 7.30–7.34 (2H, m), 7.41 (2H, ddd, J = 7, 2, and 1 Hz); ¹³C NMR (100 MHz)(CDCl₃) δ 26.45 (t), 26.54 (t), 29.23 (t), 32.05 (t), 34.12 (t), 71.79 (s), 101.63 (s), 125.83 (d), 126.16 (d), 126.77 (s), 129.10 (d), 133.73 (s), 140.94 (d). Anal. Calcd for C₁₅H₁₆S: C, 78.90; H, 7.06. Found: C, 79.00; H, 7.18.

S-Phenyl cycloheptylideneethanethioate (3n): a yellow oil, IR (film, cm⁻¹) 1690 (COS); ¹H NMR (400 MHz)(CDCl₃) δ 1.53–1.75 (8H, m), 2.37–2.40 (2H, m), 2.81–2.84 (2H, m), 6.07 (1H, brs), 7.26–7.44 (5H, m); MS m/z 246 (M⁺); high-resolution mass was not measured because **3m** was contaminated with a trace amount of other complex compounds.

(3E,5E)- and (3E,5Z)-1-(Phenylthio)octa-3,5-dien-1-yne (20): a pale yellow oil, IR (film, cm⁻¹) 2140 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 1.02 (t, J = 8 Hz), 1.03 (t, J = 7Hz), 2.12–2.19 (m), 2.22–2.27 (m), 5.69 (d, J = 16 Hz), 5.77 (d, J = 16 Hz), 5.86–5.93 (m), 6.01–6.15 (m), 6.65 (dd, J = 11and 15 Hz), 6.96 (dd, J = 12 and 16 Hz), 7.19–7.23 (m), 7.31– 7.35 (m), 7.41–7.47 (m); ¹³C NMR (100 MHz)(CDCl₃) δ 13.80 ((3E,5E)-q), 14.69 ((3E,5Z)-q), 22.05 ((3E,5Z)-t), 26.45 ((3E,-5E)-t), 77.00 (s), 77.42 (s), 98.38 ((3E,5E)-s), 106.90 ((3E,5Z)s), 108.91 ((3E,5E)-d), 110.83 ((3E,5Z)-d), 126.65 (d), 126.71 (d), 126.76 (d), 126.98 (d), 127.07 (d), 127.69 (d), 129.19 (d), 129.76 (d), 129.80 (d), 133.77 (s), 133.93 (s), 138.23 (d), 138.32 (d), 141.05 (d), 141.43 (s), 141.70 (s), 143.57 (d); high-resolution mass calcd for C₁₄H₁₄S m/z 214.0817, m/z 214.0812.

(E)- and (Z)-3,3'-Oxybis[1-(phenylthio)oct-4-en-1-yne] (40): a pale yellow oil, IR (film, cm⁻¹) 2150 (acetylene); ¹H NMR (400 MHz)(CDCl₃) δ 0.91 (t, J = 7 Hz), 0.92 (t, J = 7Hz), 1.30–1.63 (m), 3.79–3.84 (m), 3.85–3.89 (m), 5.79 (brd, J = 16 Hz), 5.85 (brd, J = 16 Hz), 6.01 (dd, J = 16 and 8 Hz), 6.10 (dd, J = 16 and 7 Hz), 7.17–7.44 (m); ¹³C NMR (100 MHz)(CDCl₃) δ 14.29 (q), 14.38 (q), 18.56 (t), 18.84 (t), 37.46 (t), 38.16 (t), 76.07 (s), 76.29 (s), 96.37 (s), 96.62 (s), 110.49 (d), 111.44 (d), 126.49 (d), 126.58 (d), 129.51 (d), 133,09 (s), 133.22 (s), 144.89 (d), 145.16 (d). Anal. Calcd for C₂₈H₃₀OS₂: C, 75.29; H, 6.77. Found: C, 75.32; H, 6.86.

Supporting Information Available: Characterization data for NMR, complete with peak assignments (6 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

```
JO950023+
```